Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
iScience ; 27(4): 109469, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577101

RESUMO

The extracellular superoxide dismutases (ecSODs) secreted by Microplitis bicoloratus reduce the reactive oxygen species (ROS) stimulated by the Microplitis bicoloratus bracovirus. Here, we demonstrate that the bacterial transferase hexapeptide (hexapep) motif and bacterial-immunoglobulin-like (BIg-like) domain of ecSODs bind to the cell membrane and transiently open hemichannels, facilitating ROS reductions. RNAi-mediated ecSOD silencing in vivo elevated ROS in host hemocytes, impairing parasitoid larva development. In vitro, the ecSOD-monopolymer needed to be membrane bound to open hemichannels. Furthermore, the hexapep motif in the beta-sandwich of ecSOD49 and ecSOD58, and BIg-like domain in the signal peptides of ecSOD67 were required for cell membrane binding. Hexapep motif and BIg-like domain deletions induced ecSODs loss of adhesion and ROS reduction failure. The hexapep motif and BIg-like domain mediated ecSOD binding via upregulating innexins and stabilizing the opened hemichannels. Our findings reveal a mechanism through which ecSOD reduces ROS, which may aid in developing anti-redox therapy.

2.
Environ Pollut ; : 124005, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38648965

RESUMO

Simultaneously stabilizing of arsenic (As) and cadmium (Cd) in co-contaminated soil presents substantial challenges due to their contrasting chemical properties. Schwertmannite (Sch) is recognized as a potent adsorbent for As pollution, with alkali modification showing promising results in the simultaneous immobilization of both As and Cd. This study systematically investigated the long-term stabilization efficacy of alkali-modified Sch in Cd-As co-contaminated farmland soil over a 200-day flooding-drying period. The results revealed that As showed significant mobility in flooded conditions, whereas Cd exhibited increased soil availability under drying phases. The addition of Sch did not affect the trends in soil pH and Eh fluctuations; nonetheless, it led to an augmentation in the levels of amorphous iron oxides and SO42- concentration in soil pore water. At a dosage of 0.5% Sch, there was a notable decrease in the mobility and soil availability of As and Cd under both flooding (34.5% and 53.6% at Day 50) and drying conditions (27.0% and 29.4% at Day 130), primarily promoting the transformation of labile metal(loid) fraction into amorphous iron oxide-bound forms. Throughout the flooding-drying treatment period, Sch maintained stable mineral morphology and mineralogical phase, highlighting its long-term stabilization effect. The findings of this study emphasize the promising application of Sch-based soil remediation agents in mitigating the challenges arising from As-Cd co-contamination. Further research is warranted to explore their application in real farmland settings and their impact on the uptake of toxic metal(loid)s by plants.

3.
Water Res ; 254: 121414, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461604

RESUMO

Pre-acidification has been shown to be crucial in attenuating antibiotic resistance genes (ARGs) during the conditioning of sewage sludge. However, it is of great significance to develop alternative conditioning approaches that can effectively eliminate sludge-borne ARGs without relying on pre-acidification. This is due to the high investment costs and operational complexities associated with sludge pre-acidification. In this study, the effects of Fe2+/Ca(ClO)2 conditioning treatment on the enhancement of sludge dewaterability and the removal of ARGs were compared with other conditioning technologies. The dose effect and the associated mechanisms were also investigated. The findings revealed that Fe2+/Ca(ClO)2 conditioning treatment had the highest potential, even surpassing Fenton treatment with pre-acidification, in terms of eliminating the total ARGs. Moreover, the effectiveness of the treatment was found to be dose-dependent. This study also identified that the •OH radical reacted with extracellular polymeric substance (EPS) and extracellular ARGs, and the HOCl, the production of which was positively correlated with the dose of Fe2+/Ca(ClO)2, could infiltrate the EPS layer and diffuse into the cell of sludge flocs, inducing the oxidation of intracellular ARGs. Furthermore, this study observed a significant decrease in the predicted hosts of ARGs and MGEs in sludge conditioned with Fe2+/Ca(ClO)2, accompanied by a significant downregulation of metabolic pathways associated with ARG propagation, thereby contributing to the attenuation of sludge-borne ARGs. Based on these findings, it can be concluded that Fe2+/Ca(ClO)2 conditioning treatment holds great potential for the removal of sludge-borne ARGs while also enhancing sludge dewaterability, which mainly relies on the intracellular oxidation by HOCl.


Assuntos
Antibacterianos , Esgotos , Matriz Extracelular de Substâncias Poliméricas , Oxirredução , Resistência Microbiana a Medicamentos/genética , Água
4.
Bioresour Technol ; 399: 130602, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499205

RESUMO

Lactic acid-rich fermentation liquid (LAFL) of food waste is found to act as a promising alternative carbon source for nitrogen removal in wastewater treatment. Here, LAFL was employed to investigate its impacts on nitrogen removal during raw municipal wastewater treatment with a comparison to sodium acetate (NaAc). Results indicated that nitrogen removals were comparable when incorporated with LAFL and NaAc (92.89 % v.s. 91.23 %). Unlike the utilization of NaAc, using LAFL could avoid suppressing the relative abundance of the nitrification genes and thus pose a negative risk to nitrogen removal during prolonged operation. The introduction of LAFL increased the stability and robustness of the functional microbial community and effectively reduced excess activated sludge (AS) generation by 109 % compared to NaAc addition, consequently enhancing nitrogen removal but diminishing the treatment cost. In general, LAFL exhibits prospective engineering application potentials and economic advantages in improving nitrogen removal by AS process.


Assuntos
Eliminação de Resíduos , Purificação da Água , Fermentação , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , 60659 , Reatores Biológicos , Desnitrificação , Alimentos , Nitrogênio , Carbono , Estudos Prospectivos , Esgotos , Ácido Láctico
5.
Waste Manag ; 177: 298-306, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38368642

RESUMO

Bio-conditioning dewatering followed by activated sludge process (BDAS) is a promising technology for purifying food waste anaerobic digestate (FWAD). However, the bio-conditioning dewatering efficiency is often affected by FWAD properties and ambient temperature. Here, we firstly reported that aeration pre-treatment of FWAD played an important role in improving the bio-conditioning dewatering performance of FWAD. The study found that the accumulated carbonate (CO32-) in FWAD severely affected the flocculation of Fe-containing flocculant formed in microbial fermentation liquor due to the competitive consumption of the flocculant by CO32-. The capillary suction time (CST) and specific resistance to filtration (SRF) of the bio-conditioned FWAD increased from initial 77.8 s and 2.0 × 1012 m/kg to 122.7 s and 3.4 × 1012 m/kg, respectively, within 1 day of aeration. Prolonged aeration pre-treatment of FWAD could reduce its CO32- concentration and total alkalinity. Additionally, the aeration pre-treatment simultaneously decreased the proportion of macromolecular organic matter that hindered dewatering and the content of total solids (TS) and hydrophilic protein-like substances in FWAD. After 20 days of aeration followed by bio-conditioning, the CST and SRF reduced to final 36.5 s and 2.3 × 1011 m/kg, respectively, indicating a substantial improvement in dewatering performance. Successive forced aeration combined with the addition of CaCl2 to eliminate adverse factors mainly CO32- was a feasible and cost-effective strategy to realize bio-conditioning dewatering of FWAD in less than 2 days and a lower reagents dose of bio-conditioning, which was helpful in the engineering application of the novel BDAS process for FWAD purification.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , 60659 , Fermentação
6.
Environ Pollut ; 346: 123644, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402935

RESUMO

Although anaerobic digestion is the mainstream technology for treating food waste (FW), the high pollutant concentration in the resultant food waste anaerobic digestate (FWAD) often poses challenges for the subsequent biochemical treatment such as activated sludge process. In this study, taking a typical FW treatment plant as an example, we analyzed the reasons behind the difficulties in treating FWAD and tested a novel process called as bio-conditioning dewatering followed by activated sludge process (BDAS) to purify FWAD. Results showed that high concentrations of suspended solids (SS) (16439 ± 475 mg/L), chemical oxygen demand (COD) (24642 ± 1301 mg/L), and ammonium nitrogen (NH4+-N) (2641 ± 52 mg/L) were main factors affecting the purification efficiency of FWAD by the conventional activated sludge process. By implementing bio-conditioning dewatering for solid-liquid separation, near 100% of SS and total phosphorus (TP), 90% of COD, 38% of total nitrogen (TN), and 37% of NH4+-N in the digestate could be effectively removed or recovered, consequently generating the transparent filtrate with relatively low pollution load and dry sludge cake (<60% of moisture content). Furthermore, after ammonia stripping and biochemical treatment, the effluent met the relevant discharge standards regulated by China, with the concentrations of COD, TN, NH4+-N, and TP ranging from 151 to 405, 10-56, 0.9-31, and 0.4-0.8 mg/L, respectively. This proposed BDAS approach exhibited stable performance and low operating costs, offering a promising solution to purify FWAD in practical engineering and simultaneously realize resource recovery.


Assuntos
Eliminação de Resíduos , Esgotos , Esgotos/química , Anaerobiose , 60659 , Alimentos , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/análise , Fósforo/análise , Reatores Biológicos
7.
Waste Manag ; 174: 666-673, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176124

RESUMO

Homogeneous Fenton (Fe2+/H2O2) serves as a high-efficiency conditioning method for sludge dewatering due to the generation of strong oxidizing hydroxyl radicals (OH). However, high dose of ferric salts produces iron-rich dewatered sludge and decrease sludge organic matters, which will not be conducive to the subsequent disposal and reutilization. Considering advantages of Fe3O4 as heterogeneous Fenton catalyst, Fe3O4-activated H2O2 (Fe3O4 + H2O2) in this study was adopted to improve sludge deep-dewatering. Reduction efficiency of the bound water (71.3 %) after Fe3O4 + H2O2 treatment (after a reaction time of 30 min) were much higher than those in the Fe2++H2O2 treatment. Especially, the moisture content of treated sludge cake by Fe3O4 + H2O2 remarkably decreased from 86.4 % to 61.3 %. Improvement mechanism of sludge dewatering after Fe3O4 + H2O2 treatment mainly included electrostatic neutralization, reactive radical oxidation, and skeleton building by analysis of contribution factors. The generation of H+ in acidification could neutralize the negatively charged compounds to promote sludge hydrophobicity. Meanwhile reactive radicals generated from Fe3O4 + H2O2 destroyed sludge extracellular polymeric substances and cell structure to release intracellular water. Furthermore, Fe3O4 as a skeleton builder could reconstruct destructive sludge flocs and form new dewatering channels. Finally, low Fe leaching content and recoverability of Fe3O4 effectively will decrease environmental implication.


Assuntos
Peróxido de Hidrogênio , Esgotos , Esgotos/química , Peróxido de Hidrogênio/química , Eliminação de Resíduos Líquidos/métodos , Ferro/química , Oxirredução , Água/química
8.
Sci Total Environ ; 912: 169035, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056677

RESUMO

Adsorption is one of the most effective methods for ecotoxic antibiotics removal, while developing high-performance adsorbents with excellent adsorption capacity is indispensable. As the unavoidable by-product of wastewater, sewage sludge has dual properties of pollution and resources. In this study, dyeing sludge waste was converted to biochar by KOH activation and pyrolysis, and used as an efficient adsorbent for aqueous antibiotics removal. The optimized dyeing sludge-derived biochar (KSC-8) has excellent specific surface area (1178.4 m2/g) and the adsorption capacity for tetracycline (TC) could reach up to 1081.3 mg/g, which is four and five times higher than those without activation, respectively. The PSO (pseudo-second-order) kinetic model and the Langmuir isotherm model fitted better to the experimental data. The obtained KSC-8 has stabilized adsorption capacity for long-term fixed-bed experiments, and maintained 86.35% TC removal efficiency after five adsorption-regeneration cycles. The adsorption mechanism involves electrostatic attraction, hydrogen bonding, π-π interactions and pore filling. This work is a green and eco-friendly way as converting the waste to treat waste in aiming of simultaneous removal of antibiotics and resource recovery of dyeing sludge.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Esgotos , Corantes , Água , Tetraciclina , Carvão Vegetal , Adsorção , Cinética , Poluentes Químicos da Água/análise
9.
Front Immunol ; 14: 1289477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146373

RESUMO

Parasitoid wasps control pests via a precise attack leading to the death of the pest. However, parasitoid larvae exhibit self-protection strategies against bracovirus-induced reactive oxygen species impairment. This has a detrimental effect on pest control. Here, we report a strategy for simulating Microplitis bicoloratus bracovirus using Mix-T dsRNA targeting 14 genes associated with transcription, translation, cell-cell communication, and humoral signaling pathways in the host, and from wasp extracellular superoxide dismutases. We implemented either one-time feeding to the younger instar larvae or spraying once on the corn leaves, to effectively control the invading pest Spodoptera frugiperda. This highlights the conserved principle of "biological pest control," as elucidated by the triple interaction of parasitoid-bracovirus-host in a cooperation strategy of bracovirus against its pest host.


Assuntos
Polydnaviridae , Vespas , Animais , Spodoptera , Polydnaviridae/genética , Interações Hospedeiro-Parasita , Larva
10.
Animals (Basel) ; 13(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570267

RESUMO

The accurate breeding of individual sheep has shown outstanding effectiveness in food quality tracing, prevention of fake insurance claims, etc., for which sheep identification is the key to guaranteeing its high performance. As a promising solution, sheep identification based on sheep face detection has shown potential effectiveness in recent studies. Unfortunately, the performance of sheep face detection has still been a challenge due to diverse background illumination, sheep face angles and scales, etc. In this paper, an effective and lightweight sheep face detection method based on an improved RetinaFace algorithm is proposed. In order to achieve an accurate and real-time detection of sheep faces on actual sheep farms, the original RetinaFace algorithm is improved in two main aspects. Firstly, to accelerate the speed of multi-scale sheep face feature extraction, an improved MobileNetV3-large with a switchable atrous convolution is optimally used as the backbone network of the proposed algorithm. Secondly, the channel and spatial attention modules are added into the original detector module to highlight important facial features of the sheep. This helps obtain more discriminative sheep face features to mitigate against the challenges of diverse face angles and scale in sheep. The experimental results on our collected real-world scenarios have shown that the proposed method outperforms others with an F1score of 95.25%, an average precision of 96.00%, a model size of 13.20 M, an average processing time of 26.83 ms, and a parameter of 3.20 M.

11.
Environ Res ; 237(Pt 2): 117014, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37652216

RESUMO

In recent years, bioleaching has emerged as a cost-effective technology for enhancing the dewaterability of sludge. However, the lengthy treatment time involved in sludge bioleaching processes limits daily treatment capacity for sludge. Here, a novel approach was developed through a short time of sludge bioleaching with A. ferrooxidans LX5 (A. f) and A. thiooxidans TS6 (A. t) followed by polyferric sulfate (PFS) flocculation (A. f + A. t + PFS). After 12.5 h of the A. f + A. t + PFS treatment (30% A. f, 10% A. t, 40 mg/g DS S0, 60 mg/g DS FeSO4•7H2O, and 120 mg/g DS PFS), the reduction efficiency of specific resistance to filtration (SRF) and sludge cake moisture content reached 94.0% and 11.6%, respectively, which were comparable to the results achieved through 24 h of completed bioleaching treatment. In pilot-scale applications, the mechanical dewatering performance was notably improved following A. f + A. t + PFS treatment, with the low moisture content of the treated sludge cake (∼59.2%). This study provides new insights into the A. f + A. t + PFS process and holds potential for developing efficient and promising sludge dewatering strategies in engineering application.

12.
Water Res ; 244: 120449, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572462

RESUMO

The biological oxidation of elemental sulfur (S0) to sulfate and the reduction of S0 to sulfide provide a potential route for extracting and reclaiming phosphorus (P) from anaerobically digested sludge (ADS). However, the treatment performance, stability, and cost-effectiveness of the two opposing bioprocesses based on S° for selective P recovery from ADS remain unclear. This study aimed to compare the roles of S0-oxidizing bacteria (S0OB) and S0-reducing bacteria (S0RB) in liberating insoluble P from ADS through single-batch and consecutive multibatch experiments. Changes in P speciation in the sludge during the biological extraction processes were analyzed by using complementary sequential extraction and P X-ray absorption near-edge spectroscopy. Results showed that S0OB treatment extracted more phosphate from the sludge compared with S0RB treatment, but it also released a considerable amount of metal cations (e.g., heavy metals, Mg2+, Al3+, Ca2+) and negatively affected sludge dewaterability due to intense sludge acidification and cell lysis. At pH 1.2, the S0OB treatment released 92.9% of P from the sludge, with the dissolution of HAP, Fe-PO4, Mg3(PO4)2, and P-fehrrihy contributing 26.8%, 22.1%, 12.8%, and 10.5%, respectively. The S0RB treatment released 63.6% of P from the sludge at pH 7.0, with negligible dissolution of metal cations, thereby avoiding costly purification of the extract and alkali neutralization for pH adjustment. This treatment involved the replacement of phosphates bounded with Fe-PO4 (FePO4 and P-fehrrihy) and Al-PO4 (P-Alumina and AlPO4) with biogenic sulfides, with contributions of 72.7%, and 20.9%, respectively. Consecutive bioprocesses for P extraction were achieved by recirculating the treated sludge. Both S0OB and S0RB treatments did not affect the extent of sludge dewatering but considerably weakened the dewatering rate. The S0OB-treated sludge exhibited prolonged filtration time (from 3010 s to 9150 s) and expressing time (from 795 s to 4690 s) during compression dewatering. After removing metal cations using cation exchange resin (CER) and neutralizing using NaOH, a vivianite product Fe3(PO4)2·8H2O (purity: 84%) was harvested from the S0OB-treated extract through precipitation with FeSO4·7H2O. By contrast, a vivianite product Fe3(PO4)2·8H2O (purity: 81%) was directly obtained from the S0RB-treated extract through precipitation with FeSO4·7H2O. Ultimately, 79.8 and 57.9wt% of P were recovered from ADS through S0OB extraction-CER purification-alkali neutralization-vivianite crystallization, and S0RB extraction-vivianite crystallization, respectively. Collectively, biological S0 reduction is more applicable than biological S0 oxidation for selectively reclaiming P from Fe/Al-associated phosphate-rich ADS due to better cost-effectiveness and process simplicity. These findings are of significance for developing sludge management strategies to improve P reclamation with minimal process inputs.


Assuntos
Fósforo , Esgotos , Fósforo/química , Esgotos/química , Ferro/química , Fosfatos/química , Enxofre , Sulfetos , Cátions , Oxirredução , Álcalis , Eliminação de Resíduos Líquidos/métodos
13.
J Hazard Mater ; 459: 132240, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37562350

RESUMO

Fe-based Fenton technology is commonly used to enhance sludge dewaterability, but it requires subsequent neutralization, resulting in excessive chemical consumption. In this study, we investigated the feasibility of using schwertmannite-composited Fe3O4 (Sch/Fe3O4) as a heterogeneous Fenton catalyst to enhance sludge dewaterability without the need for pH adjustment. A high reduction efficiency of sludge specific resistance to filtration (94.4%), moisture content (11.4%) and bound water (45.5%) after Sch/Fe3O4 +H2O2 treatment at initial pH 7.5 were obtained, suggesting that Sch/Fe3O4 +H2O2 posed good dehydration performance without any acidification. SO42- and H+ generation in Sch/Fe3O4 system played an important role in sludge pH decrease, which facilitated sludge cell lysis, intracellular water release, and provided a suitable pH for Fenton reaction. Reactive species (•OH, •O2-, and 1O2) from Sch/Fe3O4 +H2O2 could effectively destroy sludge EPS, releasing more bound water. Additionally, the negatively charged compounds were neutralized by dissolved Fe2+/Fe3+. Sch/Fe3O4, as a skeleton builder, rearranged the dissociative sludge flocs to improve the incompressibility and permeability of sludge cake. Finally, sludge treated with Sch/Fe3O4 +H2O2 achieved organic matters reserve, heavy metals reduction, further benefiting the final disposal.


Assuntos
Ferro , Esgotos , Ferro/química , Esgotos/química , Peróxido de Hidrogênio/química , Água/química , Concentração de Íons de Hidrogênio , Eliminação de Resíduos Líquidos/métodos , Oxirredução
14.
Chem Biodivers ; 20(8): e202300841, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37462846

RESUMO

Three undescribed glycoside constituents, macrophyllosides E-G and a pair of iridoid glycosides genticrasides A/B, together with eleven known glycoside compounds were isolated from the roots of Gentiana crassicaulis Duthie ex Burk. Their structures were identified by means of spectra analysis and data comparison with previous literatures. Interestingly, the glucose moieties in macrophylloside E and F possess free anomeric hydroxy groups. Genticrasides A/B, identified as a pair of iridoid originated lactones, have not been reported from Gentianaceae family up to now. The anti-inflammatory effects of selected compounds were also evaluated through the nitric oxide (NO) production inhibition in lipopolysaccharides (LPS)-induced RAW264.7 macrophage cells. In which, macrophyllosides G and D showed NO inhibitory activities with rates of 76.14±4.02 % and 52.44±8.29 % at 100 µg/mL.


Assuntos
Gentiana , Gentiana/química , Raízes de Plantas/química , Glicosídeos Iridoides/farmacologia , Iridoides/análise , Macrófagos , Óxido Nítrico
15.
Microbiol Spectr ; 11(3): e0415222, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37093057

RESUMO

Fecal microbiota transplantation (FMT) can induce clinical remission in ulcerative colitis (UC) patients. Enemas, nasoduodenal tubes, and colonoscopies are the most common routes for FMT administration. However, there is a lack of definitive evidence regarding the effectiveness of capsulized FMT treatment in UC patients. In this study, we administered capsulized FMT to 22 patients with active UC to assess the efficiency of capsulized FMT and determine the specific bacteria and metabolite factors associated with the response to clinical remission. Our results showed that the use of capsulized FMT was successful in the treatment of UC patients. Capsulized FMT induced clinical remission and clinical response in 57.1% (12 of 21) and 76.2% (16 of 21) of UC patients, respectively. Gut bacterial richness was increased after FMT in patients who achieved remission. Patients in remission after FMT exhibited enrichment of Alistipes sp. and Odoribacter splanchnicus, along with increased levels of indolelactic acid. Patients who did not achieve remission exhibited enrichment of Escherichia coli and Klebsiella and increased levels of biosynthesis of 12,13-DiHOME (12,13-dihydroxy-9Z-octadecenoic acid) and lipopolysaccharides. Furthermore, we identified a relationship between specific bacteria and metabolites and the induction of remission in patients. These findings may provide new insights into FMT in UC treatment and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects. (This study has been registered at ClinicalTrails.gov under registration no. NCT03426683). IMPORTANCE Fecal microbiota transplantation has been successfully used in patients. Recently, capsulized FMT was reported to induce a response in patients with UC. However, limited patients were enrolled in such studies, and the functional factors of capsulized FMT have not been reported in the remission of patients with UC. In this study, we prospectively recruited patients with UC to receive capsulized FMT. First, we found that capsulized FMT could induce clinical remission in 57.1% of patients and clinical response in 76.2% after 12 weeks, which was more acceptable. Second, we found a relationship between the decrease of opportunistic pathogen and lipopolysaccharide synthesis in patients in remission after capsulized FMT. We also identified an association between specific bacteria and metabolites and remission induction in patients after capsulized FMT. These findings put forward a possibility for patients to receive FMT at home and provide reference information about therapeutic microbial manipulation of FMT to enhance its effects.


Assuntos
Colite Ulcerativa , Doenças Transmissíveis , Microbioma Gastrointestinal , Humanos , Bactérias , Colite Ulcerativa/terapia , Colite Ulcerativa/microbiologia , Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Resultado do Tratamento
17.
Medicine (Baltimore) ; 102(15): e33478, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37058039

RESUMO

Endometriosis is associated with ovarian cancers, mainly endometrioid and clear-cell carcinomas. Iron metabolism has been shown to play a role in endometriosis. Therefore, it is vital to explore the relationship between iron metabolism and ovarian cancer and to identify novel markers for diagnostics and therapeutics. The endometriosis dataset GSE51981 and the ovarian cancer dataset GSE26712 were obtained from the gene expression omnibus database, and differentially expressed genes were identified. Iron metabolism genes were obtained from molecular signatures database, and hub genes from the 3 datasets were obtained. Seven hub genes were identified by bioinformatic analysis, and 3 hub genes (NCOA4, ETFDH, and TYW1) were further selected by logistic regression, which were verified in an independent endometriosis dataset (GSE25628) and ovarian cancer dataset (GSE14407), showing good predictive diagnostic value (area under the receiver operating characteristic curve of 0.88 and 0.9, respectively). Gene Ontology, gene set enrichment analysis, and immune infiltration analysis further confirmed the related functions, pathways, and immune relationship between iron metabolism and ovarian cancer. This study highlights the potential of targeting iron metabolism in the prevention of potential ovarian cancer and in the further exploration of endometriosis and endometriosis-relevant ovarian cancer therapeutics.


Assuntos
Endometriose , Neoplasias Ovarianas , Humanos , Feminino , Endometriose/complicações , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fatores de Transcrição/metabolismo , Ferro
18.
Environ Pollut ; 324: 121383, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870598

RESUMO

Planting rice (Oryza sativa L.) in As-contaminated paddy soils can lead to accumulation of arsenic (As) in rice grains, while the application of phosphorus (P) fertilizers during rice growth may aggravate the accumulation effect. However, remediating flooding As-contaminated paddy soils with conventional Fe(III) oxides/hydroxides can hardly achieve the goals of effectively reducing grain As and maintaining the utilization efficiency of phosphate (Pi) fertilizers simultaneously. In the present study, schwertmannite was proposed to remediate flooding As-contaminated paddy soil because of its strong sorption capacity for soil As, and its effect on the utilization efficiency of Pi fertilizer was investigated. Results of a pot experiment showed that Pi fertilization along with schwertmannite amendment was effective to reduce the mobility of As in the contaminated paddy soil and meanwhile increase soil P availability. The schwertmannite amendment along with Pi fertilization reduced the content of P in Fe plaque on rice roots, compared with the corresponding amount of Pi fertilizer alone, which can be attributed to the change in mineral composition of Fe plaque mainly induced by schwertmannite amendment. Such reduction in P retention on Fe plaque was beneficial for improving the utilization efficiency of Pi fertilizer. In particular, amending flooding As-contaminated paddy soil with schwertmannite and Pi fertilizer together has reduced the content of As in rice grains from 1.06 to 1.47 mg/kg to only 0.38-0.63 mg/kg and significantly increased the shoot biomass of rice plants. Therefore, using schwertmannite to remediate flooding As-contaminated paddy soils can achieve the dual goals of effectively reducing grain As and maintaining the utilization efficiency of P fertilizers.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Fertilizantes/análise , Arsênio/análise , Solo , Compostos Férricos/farmacologia , Poluentes do Solo/análise , Cádmio/análise
19.
Artigo em Inglês | MEDLINE | ID: mdl-36833685

RESUMO

The unsatisfactory performance of the conventional swine wastewater treatment is drawing increasing attention due to the large amount of refractory chemical oxygen demand (COD), nitrogen, and phosphorus attached to the suspended solids (SS). In this study, for the first time, a novel process based on bio-coagulation dewatering followed by a bio-oxidation (BDBO) system was developed to treat swine wastewater containing high-strength SS, COD, TN, and TP. Firstly, after the bio-coagulation process, the removal efficiencies of SS, COD, NH3-N, and TP reached as high as 99.94%, 98.09%, 61.19%, and 99.92%, respectively. Secondly, the filtrate of the bio-coagulation dewatering process was introduced into the subsequent bio-oxidation process, in which the residual COD and NH3-N were further biodegraded in a sequence batch reactor. In addition, the dewatering performance of the concentrated swine slurry was substantially improved, with the specific resistance to filtration decreasing from 17.0 × 1012 to 0.3 × 1012 m/kg. Moreover, the concentrated swine slurry was pressed and filtered into a semi-dry cake after pilot-scale bio-coagulation dewatering treatment. Finally, the concentrations of COD and NH3-N in the effluent after the BDBO process, ranging between 150-170 mg/L and 75-90 mg/L, met the relevant discharge standard. Compared to traditional treatments, the BDBO system has excellent large-scale potential for improving the treatment efficiency, shortening the operation period, and reducing the processing costs, and is emerging as a cost-effective alternative for the treatment of wastewater containing high concentrations of SS, COD, TN, and TP.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Animais , Suínos , Estudos de Viabilidade , Fósforo , Nitrogênio , Reatores Biológicos
20.
Brain Inj ; : 1-7, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36625002

RESUMO

BACKGROUND: Cranioplasty is a common surgery in the neurosurgery for patients with skull defects following decompression craniectomy. Concomitant rare complications are increasingly reported, such as malignant cerebral edema after cranioplasty. CASE REPORT: A 45-year-old man underwent decompression craniectomy due to traumatic brain injury. At 3 months after the decompression craniectomy, the patient developed refractory subdural hydrogen and received ipsilateral refractory subdural effusion capsule resection, but no significant relief was seen. Therefore, the cranioplasty was decided to treat subdural hydrogen and restore the normal appearance of the skull. After the successful cranioplasty surgery and the expected anesthesia recovery period, the pupils of the patients were continued to be dilated and fixed, without light reflection and spontaneous breathing. The Computed Tomography of the patient 1 hour after surgery showed malignant cerebral edema. CONCLUSIONS: Malignant cerebral edema is a rare and lethal complication after cranioplasty. Negative pressure drainage and deregulation of cerebral blood flow at the end of cranioplasty may partially explain the malignant cerebral after cranioplasty. In addition, patients with epileptic seizures, no spontaneous breathing, dilated pupils without reflection, and hypotension within a short period after cranioplasty may show the occurrence of malignant cerebral.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...